289 research outputs found

    Degeneracy and Para-supersymmetry of Dirac Hamiltonian in (2+1)- Spacetime

    Get PDF
    The quantum mechanics of a spin 1/2 particle on a locally spatial constant curvature part of a (2+1)- spacetime in the presence of a constant magnetic field of a magnetic monopole has been investigated. It has been shown that these 2-dimensional Hamiltonians have the degeneracy group of SL(2,c), and para-supersymmetry of arbitrary order or shape invariance. Using this symmetry we have obtained its spectrum algebraically. The Dirac's quantization condition has been obtained from the representation theory. Also, it is shown that the presence of angular deficit suppresses both the degeneracy and shape invariance.Comment: 31 pages, Latex, no figures, to be published in J. Math. Phy

    Formulation of Electrodynamics with an External Source in the Presence of a Minimal Measurable Length

    Full text link
    In a series of papers, Quesne and Tkachuk (J. Phys. A: Math. Gen. \textbf{39}, 10909 (2006); Czech. J. Phys. \textbf{56}, 1269 (2006)) presented a D+1D+1-dimensional (β,β)(\beta,\beta')-two-parameter Lorentz-covariant deformed algebra which leads to a nonzero minimal measurable length. In this paper, the Lagrangian formulation of electrodynamics in a 3+1-dimensional space-time described by Quesne-Tkachuk algebra is studied in the special case β=2β\beta'=2\beta up to first order over the deformation parameter β\beta. It is demonstrated that at the classical level there is a similarity between electrodynamics in the presence of a minimal measurable length (generalized electrodynamics) and Lee-Wick electrodynamics. We obtain the free space solutions of the inhomogeneous Maxwell's equations in the presence of a minimal length. These solutions describe two vector particles (a massless vector particle and a massive vector particle). We estimate two different upper bounds on the isotropic minimal length. The first upper bound is near to the electroweak length scale (electroweak1018m)(\ell_{electroweak}\sim 10^{-18}\, m), while the second one is near to the length scale for the strong interactions (strong1015m)(\ell_{strong}\sim 10^{-15}\, m). The relationship between the Gaete-Spallucci nonlocal electrodynamics (J. Phys. A: Math. Theor. \textbf{45}, 065401 (2012)) and electrodynamics with a minimal length is investigated.Comment: 13 pages, no figur

    Exact solutions of Dirac equation on (1+1)-dimensional spacetime coupled to a static scalar field

    Full text link
    We use a generalized scheme of supersymmetric quantum mechanics to obtain the energy spectrum and wave function for Dirac equation in (1+1)-dimensional spacetime coupled to a static scalar field.Comment: 7 pages, Late

    Nociceptive-Evoked Potentials Are Sensitive to Behaviorally Relevant Stimulus Displacements in Egocentric Coordinates.

    Get PDF
    Feature selection has been extensively studied in the context of goal-directed behavior, where it is heavily driven by top-down factors. A more primitive version of this function is the detection of bottom-up changes in stimulus features in the environment. Indeed, the nervous system is tuned to detect fast-rising, intense stimuli that are likely to reflect threats, such as nociceptive somatosensory stimuli. These stimuli elicit large brain potentials maximal at the scalp vertex. When elicited by nociceptive laser stimuli, these responses are labeled laser-evoked potentials (LEPs). Although it has been shown that changes in stimulus modality and increases in stimulus intensity evoke large LEPs, it has yet to be determined whether stimulus displacements affect the amplitude of the main LEP waves (N1, N2, and P2). Here, in three experiments, we identified a set of rules that the human nervous system obeys to identify changes in the spatial location of a nociceptive stimulus. We showed that the N2 wave is sensitive to: (1) large displacements between consecutive stimuli in egocentric, but not somatotopic coordinates; and (2) displacements that entail a behaviorally relevant change in the stimulus location. These findings indicate that nociceptive-evoked vertex potentials are sensitive to behaviorally relevant changes in the location of a nociceptive stimulus with respect to the body, and that the hand is a particularly behaviorally important site

    Formulation of the Spinor Field in the Presence of a Minimal Length Based on the Quesne-Tkachuk Algebra

    Full text link
    In 2006 Quesne and Tkachuk (J. Phys. A: Math. Gen. {\bf 39}, 10909, 2006) introduced a (D+1)-dimensional (β,β)(\beta,\beta')-two-parameter Lorentz-covariant deformed algebra which leads to a nonzero minimal length. In this work, the Lagrangian formulation of the spinor field in a (3+1)-dimensional space-time described by Quesne-Tkachuk Lorentz-covariant deformed algebra is studied in the case where β=2β\beta'=2\beta up to first order over deformation parameter β\beta. It is shown that the modified Dirac equation which contains higher order derivative of the wave function describes two massive particles with different masses. We show that physically acceptable mass states can only exist for β<18m2c2\beta<\frac{1}{8m^{2}c^{2}}. Applying the condition β<18m2c2\beta<\frac{1}{8m^{2}c^{2}} to an electron, the upper bound for the isotropic minimal length becomes about 3×1013m3 \times 10^{-13}m. This value is near to the reduced Compton wavelength of the electron (λc=mec=3.86×1013m)(\lambda_c = \frac{\hbar}{m_{e}c} = 3.86\times 10^{-13} m) and is not incompatible with the results obtained for the minimal length in previous investigations.Comment: 11 pages, no figur

    The Effect of Silymarin on Serum Concentration of Soluble Apoptosis Markers in β-Thalassemia Major Patients Receiving Desferrioxamine

    Get PDF
    ABSTRACT Background: Despite appropriate chelation therapy with desferrioxamine, iron deposition in visceral organs causes tissue damage in thalassemia major patients. Excess iron can generate reactive oxygen species (ROS) that may lead to cell death and apoptosis. Therefore, antioxidants such as plant flavonoids can be an effective treatment to reduce ROS in thalassemia patients. Aims: In this study, we aimed to investigate the serum levels of apoptosis markers in βthalassemia major patients treated with silymarin and ..

    Optimizing an Adaptive Neuro-Fuzzy Inference System for Spatial Prediction of Landslide Susceptibility Using Four State-of-the-art Metaheuristic Techniques.

    Full text link
    Four state-of-the-art metaheuristic algorithms including the genetic algorithm (GA), particle swarm optimization (PSO), differential evolutionary (DE), and ant colony optimization (ACO) are applied to an adaptive neuro-fuzzy inference system (ANFIS) for spatial prediction of landslide susceptibility in Qazvin Province (Iran). To this end, the landslide inventory map, composed of 199 identified landslides, is divided into training and testing landslides with a 70:30 ratio. To create the spatial database, thirteen landslide conditioning factors are considered within the geographic information system (GIS). Notably, the spatial interaction between the landslides and mentioned conditioning factors is analyzed by means of frequency ratio (FR) theory. After the optimization process, it was shown that the DE-based model reaches the best response more quickly than other ensembles. The landslide susceptibility maps were developed, and the accuracy of the models was evaluated by a ranking system, based on the calculated area under the receiving operating characteristic curve (AUROC), mean absolute error, and mean square error (MSE) accuracy indices. According to the results, the GA-ANFIS with a total ranking score (TRS) = 24 presented the most accurate prediction, followed by PSO-ANFIS (TRS = 17), DE-ANFIS (TRS = 13), and ACO-ANFIS (TRS = 6). Due to the excellent results of this research, the developed landslide susceptibility maps can be applied for future planning and decision making of the related area
    corecore